-
Subscribe to Blog:
SEARCH THE BLOG
CATEGORIES
- Aerospace
- Asset Maintenance
- Automotive
- Blog
- Building Products
- Case Studies
- Chemical Processing
- Consulting
- Food & Beverage
- Forestry Products
- Hospitals & Healthcare
- Knowledge Transfer
- Lean Manufacturing
- Life Sciences
- Logistics
- Manufacturing
- Material Utilization
- Metals
- Mining
- News
- Office Politics
- Oil & Gas
- Plastics
- Private Equity
- Process Improvement
- Project Management
- Spend Management
- Supply Chain
- Uncategorized
- Utilities
- Whitepapers
BLOG ARCHIVES
- December 2024 (3)
- November 2024 (2)
- October 2024 (6)
- September 2024 (5)
- August 2024 (5)
- July 2024 (6)
- June 2024 (3)
- May 2024 (3)
- April 2024 (4)
- March 2024 (3)
- February 2024 (4)
- January 2024 (5)
- December 2023 (2)
- November 2023 (1)
- October 2023 (6)
- September 2023 (3)
- August 2023 (4)
- July 2023 (2)
- June 2023 (3)
- May 2023 (7)
- April 2023 (3)
- March 2023 (3)
- February 2023 (5)
- January 2023 (6)
- December 2022 (2)
- November 2022 (5)
- October 2022 (5)
- September 2022 (5)
- August 2022 (6)
- July 2022 (3)
- June 2022 (4)
- May 2022 (5)
- April 2022 (3)
- March 2022 (5)
- February 2022 (4)
- January 2022 (7)
- December 2021 (3)
- November 2021 (5)
- October 2021 (3)
- September 2021 (2)
- August 2021 (6)
- July 2021 (2)
- June 2021 (10)
- May 2021 (4)
- April 2021 (5)
- March 2021 (5)
- February 2021 (3)
- January 2021 (4)
- December 2020 (3)
- November 2020 (3)
- October 2020 (3)
- September 2020 (3)
- August 2020 (4)
- July 2020 (3)
- June 2020 (5)
- May 2020 (3)
- April 2020 (3)
- March 2020 (4)
- February 2020 (4)
- January 2020 (4)
- December 2019 (3)
- November 2019 (2)
- October 2019 (4)
- September 2019 (2)
- August 2019 (4)
- July 2019 (3)
- June 2019 (4)
- May 2019 (2)
- April 2019 (4)
- March 2019 (4)
- February 2019 (5)
- January 2019 (5)
- December 2018 (2)
- November 2018 (2)
- October 2018 (5)
- September 2018 (4)
- August 2018 (3)
- July 2018 (2)
- June 2018 (4)
- May 2018 (3)
- April 2018 (3)
- March 2018 (2)
- February 2018 (2)
- January 2018 (1)
- December 2017 (1)
- November 2017 (2)
- October 2017 (2)
- September 2017 (1)
- August 2017 (2)
- July 2017 (2)
- June 2017 (1)
- April 2017 (3)
- March 2017 (3)
- February 2017 (2)
- January 2017 (2)
- December 2016 (2)
- November 2016 (4)
- October 2016 (4)
- September 2016 (3)
- August 2016 (6)
- July 2016 (4)
- June 2016 (4)
- May 2016 (1)
- April 2016 (3)
- March 2016 (4)
- February 2016 (2)
- January 2016 (4)
- December 2015 (3)
- November 2015 (3)
- October 2015 (1)
- September 2015 (1)
- August 2015 (4)
- July 2015 (6)
- June 2015 (4)
- May 2015 (7)
- April 2015 (6)
- March 2015 (6)
- February 2015 (4)
- January 2015 (3)
CONNECT WITH US
Tag Archives: glass manufacturing
What challenges do glass manufacturers face as they attempt to reduce their energy consumption? Where might they turn to achieve significant results?
Troubles with energy efficiency in glass manufacturing as a sector, true to its product, are as transparent as they’ve ever been in this age of sustainability and eco-conscious private sector leadership. For the sake of the environment and operational costs, the glass industry has sought ways to rectify the matter.
Glass production: Portrait of an energy-intensive industry
According to data from the U.S. Energy Information Administration, glass manufacturing – the production of glass containers, flat glass, fiberglass, etc. – accounts for 1 percent of the U.S. manufacturing sector’s total energy consumption, placing it on par with other energy-intensive industries like steel and cement. However, as the EIA stipulates, glass manufacturing throughput volumes are much lower than others of its consumptive caliber, thus making it all the more inefficient in terms of energy use per unit.
“Melting processes consume 65% to 75% of energy required by glassmakers.”
Furnace operations represent the majority of energy expenses for glass manufacture across all subcategories, according to a study from the International Energy Agency. Depending on region of product, end product, and utilization of processes like sintering or cullet agglomeration, melting limestone, silica sand, or soda ash consumes anywhere from 65 to 75 percent of energy required by a given glassmaker. With so much riding on energy expended for direct production, any optimization efforts glass manufacturers undertake run the risk of compromising the integrity of the product and further complicate matters.
Nearly three-quarters of fuel usage for glass production in the U.S. relies on natural gas, with the final quarter primarily coming from electricity by way of “boosting.” In a pinch, electric boosting technology can increase production dramatically – but it comes at a cost to efficiency as manufacturers trade additional operating costs for immediate results to keep up with demand.
Although these challenges may be great, in what ways have some glassmakers already begun turning energy-intensive operations around?
Furnace upgrades and process changes retain heat and long-term value
Innovation will ultimately resolve the glass industry’s high energy consumption, especially as it pertains to the technology charged with controlling combustive fuels and heat transfer in glass-producing furnaces.
Glass manufacturing requires a light touch, both in forming products and controlling fuel.
First, any industry utilizing natural gas as a fuel source is bound to run into trouble with inconsistent diluent and hydrocarbon makeup. The result is an inability to predict or react to intensity increases or decreases within the burner, sometimes leading to resource overuse. Should glassmakers invest in technology capable of balancing the flow of natural gas into their furnaces regardless of composition or steading their air-to-fuel ratios, they will effectively reduce energy consumption at a traditionally wasteful process point.
Furthermore, while it may offer glass manufacturers greater market agility, electrical boosting technology can defeat its own purpose of meeting demand increases by adding considerably to energy costs, thus mitigating or negating revenue. Instead, the U.S. Department of Energy recommends outfitting outdated furnaces with waste heat capture retrofits for process heating. This technology captures lost heat and returns it to the furnace before electrical boosting occurs, priming the materials inside and reducing the amount of boosted energy required to raise the temperature to an actionable degree.
In fact, minimizing heat loss at any opportunity throughout the entire glass manufacturing process would also help immensely. Efficiency gains may only require operators to close furnace doors as often as possible or initiate a preventative maintenance program to ensure all energy-reliant assets stay in good working order. Never underestimate these little optimizers – they can really make a difference.