-
Subscribe to Blog:
SEARCH THE BLOG
CATEGORIES
- Aerospace
- Asset Maintenance
- Automotive
- Blog
- Building Products
- Case Studies
- Chemical Processing
- Consulting
- Food & Beverage
- Forestry Products
- Hospitals & Healthcare
- Knowledge Transfer
- Lean Manufacturing
- Life Sciences
- Logistics
- Manufacturing
- Material Utilization
- Metals
- Mining
- News
- Office Politics
- Oil & Gas
- Plastics
- Private Equity
- Process Improvement
- Project Management
- Spend Management
- Supply Chain
- Uncategorized
- Utilities
- Whitepapers
BLOG ARCHIVES
- September 2024 (2)
- August 2024 (5)
- July 2024 (6)
- June 2024 (3)
- May 2024 (3)
- April 2024 (4)
- March 2024 (3)
- February 2024 (4)
- January 2024 (5)
- December 2023 (2)
- November 2023 (1)
- October 2023 (6)
- September 2023 (3)
- August 2023 (4)
- July 2023 (2)
- June 2023 (3)
- May 2023 (7)
- April 2023 (3)
- March 2023 (3)
- February 2023 (5)
- January 2023 (6)
- December 2022 (2)
- November 2022 (5)
- October 2022 (5)
- September 2022 (5)
- August 2022 (6)
- July 2022 (3)
- June 2022 (4)
- May 2022 (5)
- April 2022 (3)
- March 2022 (5)
- February 2022 (4)
- January 2022 (7)
- December 2021 (3)
- November 2021 (5)
- October 2021 (3)
- September 2021 (2)
- August 2021 (6)
- July 2021 (2)
- June 2021 (10)
- May 2021 (4)
- April 2021 (5)
- March 2021 (5)
- February 2021 (3)
- January 2021 (4)
- December 2020 (3)
- November 2020 (3)
- October 2020 (3)
- September 2020 (3)
- August 2020 (4)
- July 2020 (3)
- June 2020 (5)
- May 2020 (3)
- April 2020 (3)
- March 2020 (4)
- February 2020 (4)
- January 2020 (4)
- December 2019 (3)
- November 2019 (2)
- October 2019 (4)
- September 2019 (2)
- August 2019 (4)
- July 2019 (3)
- June 2019 (4)
- May 2019 (2)
- April 2019 (4)
- March 2019 (4)
- February 2019 (5)
- January 2019 (5)
- December 2018 (2)
- November 2018 (2)
- October 2018 (5)
- September 2018 (4)
- August 2018 (3)
- July 2018 (2)
- June 2018 (4)
- May 2018 (3)
- April 2018 (3)
- March 2018 (2)
- February 2018 (2)
- January 2018 (1)
- December 2017 (1)
- November 2017 (2)
- October 2017 (2)
- September 2017 (1)
- August 2017 (2)
- July 2017 (2)
- June 2017 (1)
- April 2017 (3)
- March 2017 (3)
- February 2017 (2)
- January 2017 (2)
- December 2016 (2)
- November 2016 (4)
- October 2016 (4)
- September 2016 (3)
- August 2016 (6)
- July 2016 (4)
- June 2016 (4)
- May 2016 (1)
- April 2016 (3)
- March 2016 (4)
- February 2016 (2)
- January 2016 (4)
- December 2015 (3)
- November 2015 (3)
- October 2015 (1)
- September 2015 (1)
- August 2015 (4)
- July 2015 (6)
- June 2015 (4)
- May 2015 (7)
- April 2015 (6)
- March 2015 (6)
- February 2015 (4)
- January 2015 (3)
CONNECT WITH US
Tag Archives: cycle times
How can manufacturers improve QC cycle times while still performing everything they need to stay compliant?
At a glance, the mission of a quality control specialist working in fields like chemical, medical device manufacturing, or life sciences seems different to that of a production manager at the same company. After all, isn’t quality control all about ensuring the safety of the products no matter how long it takes, whereas production itself is far more concerned with meeting quotas and demand on a tight schedule?
Yes and no – while quality control standardizes the manufacturing process to avoid variances harmful to customers and the reputation of the organization at large, QC microbiologists and technicians no doubt have work orders of their own to fill and capacities to reach when it comes to testing. And although production managers or other manufacturing specialists may have output on the mind, they understand without a high standard for quality in operations, their businesses wouldn’t likely have any customer demand in the first place.
Optimizing QC laboratory processes in the manufacturing sector involves a level balancing of both safety and speed without compromising one another. How can manufacturers improve QC cycle times while still performing everything they need to stay compliant?
All QC specialists should follow the same guidelines for greater risk prevention and cycle time preservation.
Drill down the basics
Good risk management in a QC lab should outline all methods for quarantining and reversing conditions adversely affecting manufactured goods. That way, microbiologists and lab technicians save resources, perform speedy investigations, and set QC processes back on track after an out-of-specification (OOS) event. However, there’s something to be said about avoiding trouble in the first place when cycle times are at stake.
To that end, the QC lab should take a page from lean manufacturing, particularly on the subject of process standardization and uniformity. The sequence in which technicians prepare for work, process samples, dispose spent resources, or clean lab equipment matters greatly to both the success of the testing and the prevention of widespread contamination. An audit of testing operations performed by laboratory supervisors may reveal areas where technicians’ actions or inactions potentially subvert the constancy of QC processing and production.
If possible, supervisors should look to documentation on past OOS events for hints on where to start looking first to minimize time and resources spent investigating. That said, any small discovery that preempts a contamination event, whether found in either historical data or through careful observation, saves production considerably in cycle time.
Bring in automation
Research published by The Royal Society of Chemistry analyzing the most common errors in chemical laboratories uncovered the greatest threat to QC cycle time stability: humans. The study found problems like sample preparation, uncalibrated equipment, miscalculation, and general human error made up the majority of OOS incidents. While insightful, these findings should come as no surprise to manufacturers, especially those who witnessed the age of manual production give way to automation.
“Manual processes anywhere open businesses up to risk.”
Truth be told, manual processes anywhere in the production cycle open businesses up to risk, perhaps even unnecessarily. The burgeoning field of rapid microbiological and rapid microbial methods devotes itself entirely to finding a solution to this very issue. Manufacturers should likewise devote their time to investigating and investing in innovations that target low-value, high-risk laboratory activities like data keying or slide movement between processing stations and incubators. Focusing on these areas mitigates the risk of production downtime due to contamination, frees up microbiologists for more value-added opportunities and reduces the overall time spent performing these tasks, all supporting better cycle times for the rest of the plant.
Go digital for smarter oversight
There’s a reason why many QC labs have gone digital with laboratory information management systems (LIMS). LIMSes aggregate and galvanize all QC processing data stored therein, so laboratory workers can utilize information in ways that complement faster, more consistent cycle times. Dashboards and other visualizations immediately come to mind. When technicians can easily interpret their workloads and capacity demands at a moment’s notice, they spend more time applying their talent to testing.
Manufacturers should remember to align their investment strategies with cycle time improvement initiatives established above. For instance, if a QC lab still finds value in manually keying data directly into an LIMS, perhaps it should purchase software with manipulable value fields. A single misplaced decimal point could send a laboratory on a costly wild goose chase attempting to find the phantom catalyst that caused an OOS reading. Some LIMS software has the power to prevent technicians from entering numbers or symbols based on prearranged value ranges, so an error in the QC lab doesn’t carry over onto the production floor in the form of downtime.