-
Subscribe to Blog:
SEARCH THE BLOG
CATEGORIES
- Aerospace
- Asset Maintenance
- Automotive
- Blog
- Building Products
- Case Studies
- Chemical Processing
- Consulting
- Food & Beverage
- Forestry Products
- Hospitals & Healthcare
- Knowledge Transfer
- Lean Manufacturing
- Life Sciences
- Logistics
- Manufacturing
- Material Utilization
- Metals
- Mining
- News
- Office Politics
- Oil & Gas
- Plastics
- Private Equity
- Process Improvement
- Project Management
- Spend Management
- Supply Chain
- Uncategorized
- Utilities
- Whitepapers
BLOG ARCHIVES
- December 2024 (4)
- November 2024 (2)
- October 2024 (6)
- September 2024 (5)
- August 2024 (5)
- July 2024 (6)
- June 2024 (3)
- May 2024 (3)
- April 2024 (4)
- March 2024 (3)
- February 2024 (4)
- January 2024 (5)
- December 2023 (2)
- November 2023 (1)
- October 2023 (6)
- September 2023 (3)
- August 2023 (4)
- July 2023 (2)
- June 2023 (3)
- May 2023 (7)
- April 2023 (3)
- March 2023 (3)
- February 2023 (5)
- January 2023 (6)
- December 2022 (2)
- November 2022 (5)
- October 2022 (5)
- September 2022 (5)
- August 2022 (6)
- July 2022 (3)
- June 2022 (4)
- May 2022 (5)
- April 2022 (3)
- March 2022 (5)
- February 2022 (4)
- January 2022 (7)
- December 2021 (3)
- November 2021 (5)
- October 2021 (3)
- September 2021 (2)
- August 2021 (6)
- July 2021 (2)
- June 2021 (10)
- May 2021 (4)
- April 2021 (5)
- March 2021 (5)
- February 2021 (3)
- January 2021 (4)
- December 2020 (3)
- November 2020 (3)
- October 2020 (3)
- September 2020 (3)
- August 2020 (4)
- July 2020 (3)
- June 2020 (5)
- May 2020 (3)
- April 2020 (3)
- March 2020 (4)
- February 2020 (4)
- January 2020 (4)
- December 2019 (3)
- November 2019 (2)
- October 2019 (4)
- September 2019 (2)
- August 2019 (4)
- July 2019 (3)
- June 2019 (4)
- May 2019 (2)
- April 2019 (4)
- March 2019 (4)
- February 2019 (5)
- January 2019 (5)
- December 2018 (2)
- November 2018 (2)
- October 2018 (5)
- September 2018 (4)
- August 2018 (3)
- July 2018 (2)
- June 2018 (4)
- May 2018 (3)
- April 2018 (3)
- March 2018 (2)
- February 2018 (2)
- January 2018 (1)
- December 2017 (1)
- November 2017 (2)
- October 2017 (2)
- September 2017 (1)
- August 2017 (2)
- July 2017 (2)
- June 2017 (1)
- April 2017 (3)
- March 2017 (3)
- February 2017 (2)
- January 2017 (2)
- December 2016 (2)
- November 2016 (4)
- October 2016 (4)
- September 2016 (3)
- August 2016 (6)
- July 2016 (4)
- June 2016 (4)
- May 2016 (1)
- April 2016 (3)
- March 2016 (4)
- February 2016 (2)
- January 2016 (4)
- December 2015 (3)
- November 2015 (3)
- October 2015 (1)
- September 2015 (1)
- August 2015 (4)
- July 2015 (6)
- June 2015 (4)
- May 2015 (7)
- April 2015 (6)
- March 2015 (6)
- February 2015 (4)
- January 2015 (3)
CONNECT WITH US
Tag Archives: Automation Technology
In today’s competitive business landscape, keeping labor costs under control is a constant concern. However, this pursuit of cost-efficiency must never come at the expense of safety. Here’s how businesses can strike a balance between these two priorities.
Standardization and Management
Standardized labor processes are the cornerstone of a safe and productive work environment. By establishing clear, well-documented procedures for each task, companies minimize confusion and errors, while also ensuring consistent quality. This translates to increased efficiency, reduced rework, and ultimately, lower labor costs.
Complementing standardized processes with a robust training program further strengthens this foundation. Comprehensive training, encompassing both initial onboarding and ongoing professional development, equips employees with the skills and knowledge necessary to perform their duties safely and effectively. This not only reduces the risk of accidents, but also empowers employees to identify and address potential issues before they escalate into costly problems.
Labor costs can be further optimized by taking a strategic approach to staff management. Reviewing staff schedules regularly and adjusting them based on actual workload can prevent unnecessary overtime and ensure employees are not overscheduled. Additionally, exploring options for part-time positions or flexible work arrangements can contribute to optimizing labor costs.
Technology and Lean Practices
Investing in automation technology can be a strategic move towards reducing labor costs while maintaining safety. Automated equipment can handle repetitive or hazardous tasks, freeing up employees to focus on more complex activities. This not only improves overall productivity but also reduces the risk of workplace injuries associated with repetitive motions or exposure to dangerous materials.
Lean manufacturing principles, which emphasize eliminating waste and maximizing value, can also offer significant cost savings. By taking a critical look at existing workflows and identifying areas for improvement, companies can reduce wasted time and resources, leading to a leaner, more efficient operation.
Choosing the Right Tools
The right tools for the job are not just essential for efficiency, but also for safety. For instance, opting for quality-assured scaffolding components like a ringlock modular system, compared to a cuplock system, can significantly impact labor costs in the long run. Ringlock systems generally require less assembly time, facilitating faster project completion and reducing labor hours. Furthermore, their robust design often translates to fewer repairs and maintenance needs, further reducing overall costs.
Implementing advanced software programs can also significantly improve various aspects of business operations, ultimately impacting labor costs. Digital tools can optimize scheduling processes, enhance production visibility, improve communication among teams, and streamline training programs.
The infographic below delves deeper into each of these strategies, providing a comprehensive roadmap to reducing labor costs while prioritizing safety. Remember, a safe and well-trained workforce is a productive one. By implementing these strategies and fostering a culture of safety and efficiency, businesses can create a win-win situation for both employees and the company’s bottom line.
The trend towards automation is progressing all the time. With the advent of COVID-19 creating employment concerns amid a changing workforce, the role of automation in manufacturing has taken on new meaning.
Now, robotics looks to automate processes for the increased safety and productivity of the modern factory. There are many ways that automation trends are reshaping the industry. Here, we will look at a list of these trends and the ways they are altering global trade.
From faster processes to 3D printing innovations, automation in manufacturing looks much different than it has in past decades. Here’s what you should know.
1. Making Processes Faster and More Efficient
One report found that automation at a macroeconomic scale could increase global manufacturing GDP between 0.8% and 1.4% per year. While those numbers might seem small, the overall impact in economic growth is substantial.
Paired with increased productivity, automation offers the following benefits:
- Labor cost savings
- Improved safety
- Enhanced quality
- Overall efficiency
Currently, substantial losses in production time and energy occur in fighting human error and clunky procedures. With automated systems, efficiency can be integrated amidst better processes for fighting energy drains like friction. This translates to potentially millions of dollars in increased revenues for manufacturers that adopt automation technology.
2. Collecting Data Through Digital Twinning
Improving manufacturing processes is possible through the trend of digital twinning changing the manufacturing landscape. Digital twinning involves virtually modeling the manufacturing process alongside the real-world system. Doing so allows companies to gather valuable data and models for simulation and experimentation.
With 50% of large manufacturers set to utilize this tech by 2021, digital twinning represents the future of manufacturing. And for good reason. Up to 30% of improvements in product quality and product cycle time are possible thanks to digital twinning, allowing companies to pair data with experimentation for revenue-boosting results.
3. Increasing Safety Through Robotics
The emergence of COVID-19 changed the way businesses manage a workspace. This is true as well for factory floors where workers have to adopt sanitation and social distancing measures. Robotics allows for the safe implementation of these policies without increased human risk.
A series of roles are now increasingly being filled by robots to allow for greater safety procedures. These include:
- Assembly Line — Working side-by-side with humans are automated systems known as co-bots. On the assembly line, these co-bots are enhancing productivity while making social distancing increasingly possible.
- Sanitation — With COVID-19 concerns, more janitorial robots are being integrated to help sanitize workspaces. These robots go beyond the average Roomba, ensuring the cleanliness of shared spaces for employee safety.
- Heavy Lifting — The constant movement and shuffling of parts and packaging in the manufacturing industry create risks for human workers. Robots can reduce that risk while efficiently moving and hauling heavy objects across a factory.
With sanitation and dangerous work now being filled by robots, factory workers can enjoy a greater level of safety. This not only increases productivity for manufacturers but reduces liability risks and costs as well.
4. Focusing on Logistics for Better Processes
Artificial intelligence. The term might invoke fear in movie-going circles, but the integration of AI in manufacturing to enhance the logistics of every process is reshaping the industry.
AI relies on the accumulation of manufacturing data to provide streamlined logistics workflow. This means sensors, digital twinning, analytics, and more to truly understand and predict factory success. With each new data set, an AI can better learn a system, inform technicians of when maintenance is needed, and build better models for an effective process.
With all the implications for manufacturing improvement, AI is one trend of industrial robotics sure to last long into the future.
5. Changing the Manufacturing Process Through 3D Printing
Automation of manufacturing is changing through the increasing use of additive processes, such as 3D printing. This automation trend has a huge impact on manufacturing of all types of products, with a wide range of materials including sustainable and plant-based options possible.
3D printing uses a digital blueprint to then produce a product from the bottom up, bit-by-bit. By building in this way, the efficiency and durability of parts can be maximized even when using alternative materials. This process means better products at potentially cheaper production costs as the technology improves. The ability for sustainable materials to be substituted in production also has beneficial implications for the environment.
The Changing Landscape of Manufacturing
As the world integrates new automation technology, manufacturers look to reap the benefits. From more efficient practices to better building techniques, manufacturing in the modern world has made substantial headway towards safety and sustainability. These technological trends enhance the safety and productivity of any manufacturing workforce, but the question has to be asked—how will automation affect displaced workers?
Currently, humans and robotics are working side-by-side to deliver better solutions. However, only time will tell how workers adapt to increased automation in the new landscape of manufacturing technologies.
This article is written by guest author Beau Peters. View more of Beau’s articles here.