The Role of Big Data Analytics in Automotive Maintenance and Predictive Diagnostics
Technology is crucial in most industries to advance safety and efficiency. The automotive sector is an excellent example of how advanced technology transforms products and, thus, the world. Big data and analytics have become an integral part of it all. So, how exactly has the automotive industry taken advantage of analytics, especially with maintenance and predictive diagnostics? How can using it benefit manufacturers? Let’s find out…
How Did Big Data Analytics Emerge in the Automotive Industry?
Big data is a relatively new concept, but its modern adaptations originated in the 1960s. For example, in 1964, IBM introduced the System/360, offering processors 100 times more potent than their predecessors. This technology is primitive in retrospect, but it was an essential first step for data processing. In the 1970s and 1980s, tech companies improved this technology to include the automotive industry.
By the 1990s, automotive technology producers began using big data analytics for vehicles. For example, global positioning systems (GPS) became more prominent this decade. These devices allowed consumers to use navigation technology well-known in the U.S. military. Many luxury cars came with this feature installed to entice consumers.
While GPS devices are still prominent, big data has improved cars enough to where they can be self-reliant. Soon, automakers will remove GPS devices once autonomous vehicles become widespread. These vehicles know where they’re going and do not need a GPS for navigation.
What Role Does Big Data Analytics Play in Automotive Maintenance and Predictive Diagnostics?
The last two decades have seen incredible growth for big data and its role in the automotive industry. Automotive professionals have used advanced technology for maintenance and predictive diagnostics. Using data helps technicians know precisely what the problem is and the necessary methods for mitigation.
Automakers primarily take advantage of big data analytics through embedded sensors in their vehicles. These devices allow the manufacturers to track cars anywhere in the world and detect where the problems lie. With this information, the automaker can notify the consumer of issues, find trends and develop solutions for widespread problems. Then, they know what issues to correct for future models of the same vehicle.
What software and technologies do automotive professionals use? These examples demonstrate how industry experts use big data for predictive maintenance and predictive diagnostics.
Machine Learning
Machine learning (ML) has become a critical part of the automotive industry because it solves complex problems and creates algorithms. For auto manufacturers, ML has helped technicians predict equipment failures.
For example, automakers use ML to analyze historical data from their vehicles. Their computers use sensor data to detect trends and see what abnormalities led to the issues. Therefore, manufacturers can catch what problems may arise when they see a particular pattern occurring in a vehicle.
Another use for ML is creating maintenance schedules for vehicles. Historical data indicate when owners of a particular model should bring their cars for routine maintenance. The algorithm is intelligent enough to combine the data with driver performance to alert when service is necessary for the vehicle.
Telematics
Telematics is one of the earliest examples of big data in the automotive industry, and it’s become vital for car owners and fleet managers worldwide. Research shows about 80% of Class 8 trucks in North America use telematics for safety and efficiency.
Telematics is essential for maintenance because it monitors vehicle health. These devices often detect problems earlier than the operator can, allowing companies to act swiftly on their machines. Early detection and mitigation save money and improve safety by not putting drivers in harmful situations.
What Are the Benefits of Big Data in Automobiles?
Big data analytics is a win-win for manufacturers and consumers. All parties can have peace of mind knowing their machines are safe and efficient. The following three benefits demonstrate how automotive professionals benefit from big data.
Improving Safety
Cars are essential for daily travel, but they can be dangerous. The National Highway Traffic and Safety Administration (NHTSA) says nearly 43,000 people died in motor vehicle traffic crashes in 2022. Reasons for accidents vary, but they can originate from fixable mechanical failures.
Big data analytics decreases the likelihood of these failures by scheduling preventive maintenance and alerting when serious problems arise. Users can know if their brakes, steering wheel or battery needs attention before a catastrophe happens.
Decreasing Downtime
Big data analytics has become invaluable for fleet managers worldwide. The average fleet manager may have 10, 100 or 1,000 vehicles under their wing, making it difficult to track all of them simultaneously. However, advanced data allows them to monitor all the cars and detect trends.
Warning systems send information to the fleet manager, allowing them to act immediately. The modern supply chain demands maximum productivity from fleets, so taking advantage of big data analytics is essential.
Supporting Sustainability
Sustainability has become a significant focus for auto manufacturers. The push for more renewable energy and less waste has led to innovation across the industry. How are they achieving sustainability standards? Big data analytics is helping automakers care for the environment.
Using big data analytics extends the life of cars and reduces the need for customers to consume resources by purchasing cars. Instead, they can keep the same vehicle longer and spend less time at the mechanic.
When cars reach their end of life, many head to the scrapyard. While recycling has improved, parts and pieces still go to waste. For example, the European Union scrapped 5.4 million passenger cars in 2020. Installing telematics devices and using big data would extend their time on the road and reduce waste.
Big Data Analytics in the Automotive Industry
Automotive technology has come a long way and only improves yearly. Modern software allows auto manufacturers to utilize big data analytics with maintenance and predictive diagnostics. With this technology, manufacturers lower the cost for themselves and consumers and make their processes more efficient.
*This article is written by Jack Shaw. Jack is a seasoned automotive industry writer with over six years of experience. As the senior writer for Modded, he combines his passion for vehicles, manufacturing and technology with his expertise to deliver engaging content that resonates with enthusiasts worldwide.